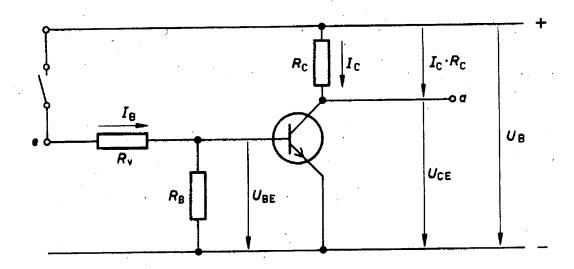
Bauelemente der Elektrotechnik


Übung: Schaltverstärker

Aufgabe: Ein einstufiger Schaltverstärker in Emitterschaltung ist zu dimensionieren.

Gegeben: Bipolar-Transistor BCY 59 A

Betriebsspannung $U_B = 12 \text{ V}$ Schaltvermögen $P_a = 0.14 \text{ W}$

Temperaturbereich $\theta_{\rm U} = +10...+50$ °C

Datenblatt des BCY 59A

NPN-Silizium-Epitaxial-Planar-Transistor für Schalter- und Verstärkeranwendungen in der Industrieelektronik.

Der Transistor wird nach der Stromverstärkung in die vier Gruppen A, B, C und D eingeteilt. Metallgehäuse 18 A 3 (DIN 41876) entspricht der internationalen Norm TO-18. Der Kollektor ist mit dem Gehäuse verbunden.

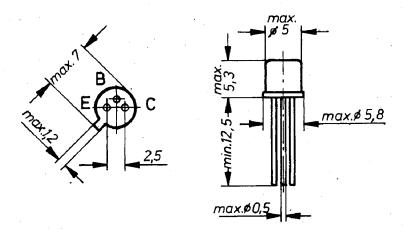


Abb. 10.86. Abmessungen des Transistorgehäuses

Grenzwerte

Kollektor-Emitterspannung $U_{\text{CES}} = 45 \text{ V}$ Emitter-Basisspannung $U_{\text{EBO}} = 7 \text{ V}$ Kollektorstrom $I_{\text{C}} = 200 \text{ mA}$ Basisstrom $I_{\text{B}} = 50 \text{ mA}$ Verlustleistung, $\vartheta_{\text{U}} = 25 \text{ °C}$ $P_{\text{tot}} = 390 \text{ mW}$ Sperrschichttemperatur $\vartheta_{\text{j}} = 200 \text{ °C}$

Statische Kennwerte bei 3u = 25 °C

Stromverstärkung B

bei $U_{\rm CE}=5$ V, $I_{\rm C}=2$ mA bei $U_{\rm CE}=1$ V, $I_{\rm C}=10$ mA bei $U_{\rm CE}=1$ V, $I_{\rm C}=100$ mA

Kollektor-Sättigungsspannung

bei $I_{\rm C} = 100$ mA, $I_{\rm B} = 2.5$ mA

Basis-Sättigungsspannung bei $I_C = 100 \text{ mA}$, $I_B = 2,5 \text{ mA}$

Kollektor-Emitter-Reststrom

bei $U_{\text{CES}} = 45 \text{ V}$, $\vartheta_{\text{j}} = 25 \text{ °C}$ bei $U_{\text{CES}} = 45 \text{ V}$, $\vartheta_{\text{j}} = 150 \text{ °C}$

Wärmewiderstand

Sperrschicht - umgebende Luft

Sperrschicht – Gehäuse

Stromverstärkungsgruppe

A D 500 (380 ... 630) 190 (> 80) 550 (240 ... 1000) > 40 > 60

 $U_{CEset} = 0.3 (0.15 \dots 0.7) V$

 $U_{\text{BEsat}} = 0.9 \ (0.75 \ \dots \ 1.2) \ \text{V}$

 $I_{CES} = 0.2 (< 10) \text{ nA}$ $I_{CES} = 0.2 (< 10) \mu \text{A}$

 $R_{\text{thU}} \le 450 \text{ K/W}$ $R_{\text{thG}} \le 150 \text{ K/W}$

Dynamischa Kennwerte

h-Parameter bei $U_{CE} = 5 \text{ V}$, $I_C = 2 \text{ mA}$, f = 1 kHz in Emitterschaltung

Stromverstärkungsgruppe

Eingangswiderstand $h_{11} = 2.7 (1.6 ... 4.5) k\Omega$ 7.5 (4.5 ... 12) kΩ

Spannungsrückwirkung $h_{12} = 1.5 \cdot 10^{-4}$ $3 \cdot 10^{-4}$

Stromverstärkung $h_{21} = 200 \ (125 \dots 250)$ 520 (350 \dotd 700) Ausgangsleitwert $h_{22} = 18 \ (<30) \ \mu\text{S}$ 50 (<100) \(100 \)

Rauschzahl

bei $U_{CE} = 5 \text{ V}$, $I_{C} = 0.2 \text{ mA}$

 $R_{\rm g}=2~{\rm k}\Omega$, Bandbreite $\Delta f=200~{\rm Hz}$ $F=2~(<6)~{\rm dB}$

Transitfrequenz

bei $U_{CE} = 5 \text{ V}$, $I_{C} = 10 \text{ mA}$

 $f_{\rm T} = 250 \ (> 125) \ {\rm MHz}$

Schaltzeiten (Meßschaltung Abb. 10.36.)

Arbeitspunkt $I_C = 100$ mA, $R_1 = 500 \Omega$,

 $R_2 = 700 \,\Omega$, $R_C = 98 \,\Omega$, $R_g = 50 \,\Omega$, $-U_{BE} = 5 \,\text{V}$, $U_B = 10 \,\text{V}$

Verzögerungszeit $t_d = 5$ ns

Anstiegzeit $t_r = 50 \text{ ns}$

Speicherzeit $t_s = 250 \text{ ns}$

Abfallzeit $t_{\rm f} = 200 \text{ ns}$

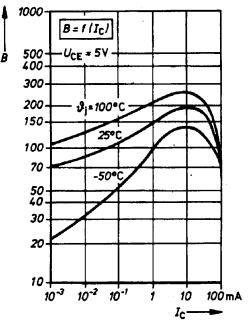
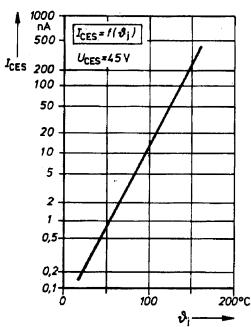
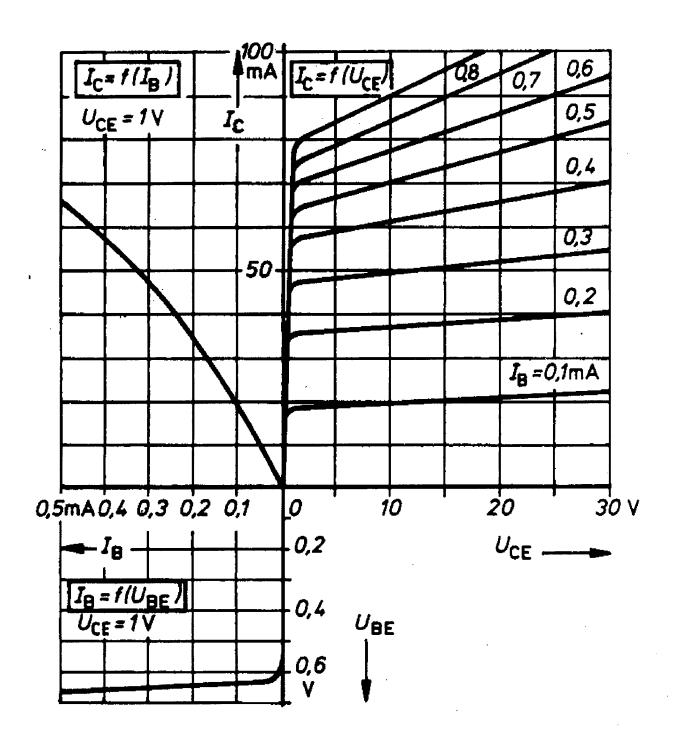




Abb. 10.88. Abhängigkeit der Stromverstärkung vom Kollektorstrom I c. Typ BCY 59 A

Abb. 10.89. Kollektor-Emitter-Reststrom $I_{\tt CES}$ in Abhängigkeit von der Sperrschichttemperatur

В	= Basisanschluß	6	- Auggangeleitwort bei affanom Ein
		h ₂₂	= Ausgangsleitwert bei offenem Ein-
В	= Statische Stromverstärkung in		gang
	Emitterschaltung	I_{B}	= Basisstrom (Gleich- bzw. Mittel-
β	= Dynamische Kurzschluß-Strom-		wert)
	verstärkung in Emitterschaltung	I_{C}	= Kollektorstrom (Gleich- bzw. Mit-
	(Stromverstärkungsfaktor)		telwert)
С	= Kollektoranschluß	I_{CBO}	= Kollektor-Basis-Reststrom bei of-
Cc	= Kollektor-Sperrschichtkapazität		fenem Emitter ($I_E = 0$)
- •	(aligemein)	$I_{\sf CEO}$	= Kollektor-Emitter-Reststrom bei of-
E	= Emitteranschluß	-020	fener Basis ($I_{\rm B}=0$)
F		7	,
•	= Rauschzahl	I_{CER}	= Kollektor-Emitter-Reststrom mit
$f_{\mathbf{g}eta}$	= Obere Grenzfrequenz in Emitter-		einem Widerstand RBE zwischen
	schaltung		Basis und Emitter
fΤ	= Transitfrequenz	I_{CES}	= Kollektor-Emitter-Reststrom bei
f _u	= Untere Grenzfrequenz		kurzgeschlossener Emitterdiode
h ₁₁	= Differentieller Eingangswiderstand		$(U_{BE}=0)$
	in Emitterschaltung mit kurzge-	I_{CEV}	= Kollektor-Emitter-Reststrom bei
	schlossenem Ausgang	,	gesperrter Emitterdiode
ΙE	= Emitterstrom (Gleich- bzw. Mittel-	ÐU	= Umgebungstemperatur
	wert)	U _B	= Ausgangsspannung einer Verstär-
k	= Kopplungsfaktor		kerschaltung
P_{tot}	= Gesamt-Verlustleistung	$U_{\mathbf{B}}$	= Betriebsspannung einer Verstär-
r _a	= Differentieller Ausgangswiderstand		kerschaltung
٠. ۵	einer Verstärkerschaltung	$ u_{BE}$	= Basis-Emitterspannung
	omor voiotaikorochantang	OBF	nasis-rimiticishaminining

/be	= Differentieller Eingangswiderstand	U _{CB} = Kollektor-Basisspannung
	eines Transistors in Emitter-	U _{CBO} = Kollektor-Basissperrspannung bei
	schaltung	offenem Emitter ($I_E = 0$)
rce	 Differentieller Ausgangswiderstand 	U_{CE} = Kollektor-Emitterspannung
	eines Transistors in Emitterschal-	$U_{CEO} = Kollektor-Emittersperrspannung$
	tung	bei offener Basis ($I_{ m B}=0$)
r _e	= Differentieller Eingangswiderstand	$U_{CER} = Kollektor-Emittersperrspannung$
	einer Verstärkerschaltung	mit einem Widerstand zwischen
R_{g}	= Innenwiderstand des Signalspan-	Basis und Emitter
, T	nungsgebers	U _{CES} = Kollektor-Emittersperrspannung
$R_{ m th}$	= Wärmewiderstand	bei kurzgeschlossener Emitterdiode
R_{thG}	— Wärmewiderstand zwischen Sperr-	$(U_{BE}=0)$
	schicht (Wärmequelle) und Ge-	$U_{CE sat} = Kollektor-Emittersättigungsspan-$
	häuse	nung (Restspannung)
R_{thK}	= Wärmewiderstand eines Kühlkör-	U _{CEV} = Kollektor-Emittersperrspannung
	pers	bei gesperrter Emitterdiode
R_{th}_{U}	— Wärmewiderstand zwischen Sperr-	U _e = Eingangsspannung einer Verstär-
	schicht (Wärmequelle) und ruhen-	kerschaltung
	der umgebender Luft	$U_{\text{EBO}} = \text{Emitter-Basissperrspannung bei}$
S	= Vorwärtssteilheit	offenem Kollektor ($I_{C}=0$)
ð	= Temperatur	$U_{F} = Durchlaßspannung \ am \ pn-Uber-$
td	= Verzögerungszeit	gang
tr	= Anstiegszeit	$U_{\rm R}$ = Sperrspannung am pn-Übergang
ts	= Speicherzeit	V _i = Dynamische Stromverstärkung
ŧ _f	= Abfallzeit	V _p = Leistungsverstärkung
$\vartheta_{\mathbf{G}}$	— Gehäusetemperatur	V _u = Dynamische Spannungsverstär-
	•	kung